1. Write $2.5 \%$ as a simplified fraction.

$$
\begin{aligned}
2.5 \%=\frac{2.5}{100} & =.025 \text { as a decimal } \\
& =\frac{25}{1000}=\frac{25.1}{28.40}=\frac{1}{40} \begin{array}{l}
\text { as a a dhaveand th } \\
\text { simplified } \\
\text { fraction }
\end{array}
\end{aligned}
$$

2. Simplify the expression $2 y^{2}-5 y+13-13 y^{2}+4 y-3$

$$
\begin{aligned}
& =\left(2 y^{2}-13 y^{2}\right)+(-5 y+4 y)+(13-3) \\
& =-11 y^{2}+y+10
\end{aligned}
$$

3. Evaluate the rational expression $\frac{2 t^{3}-8}{t^{2}+5}$ for $t=-1$.

$$
\begin{aligned}
=\frac{2(-1)^{3}-8}{(-1)^{2}+5} & =\frac{2(-1)-8}{1+5}=\frac{-2-8}{6}=\frac{-10}{6} \\
& =-\frac{5}{3}
\end{aligned}
$$

4. Write the number 127,000 in scientific notation.

$$
=1.27 \times 10^{5}
$$

5. Translate the following into an algebraic equation!

The sum of a number and 16 , divided by 4 , yields the quotient of the number and 9 .

$$
\frac{x+16}{4}=\frac{x}{9}
$$

6. Find the restricted values) for

$$
\uparrow \text { means "not allowed" } \frac{x^{2}-9}{x^{2}-2 x-15}
$$

and dividing by zero is not allowed. So set

$$
x^{2}-2 x-15=0
$$

$$
(x-5)(x+3)=0
$$

Quadratic so use 2PP
Factor.
7. 31.5 is what percent of 63 ?

$$
\begin{aligned}
& 31 . S=P \cdot 63 \\
& \frac{31 . S}{63}=\frac{P \cdot 63}{63} \Rightarrow
\end{aligned}
$$

"15" $\longleftrightarrow$
"of" $\longleftrightarrow$ times

$$
p=0.5=50 \%
$$

(move dee pt 2 places to the nght)
8. Simplify and write your answer in scientific notation:

$$
\begin{aligned}
& =(8 \cdot 2.5) \times\left(10^{4} \cdot 10^{-9}\right) \\
& \left.=20 \times 10^{4}\right) \cdot\left(2.5 \times 10^{-9}\right) \\
& =\left(2.0 \times 10^{1}\right) \times 10^{-5}=20 \times 10^{-5} \\
& =2.0 \times 10^{-4}
\end{aligned}
$$

But 20 is not between 1 and 10! So put 20 in SN:

$$
20=2.0 \times 10^{1}
$$

9. If -24 is added to a number, the sum will be 6 times the number. Find the number.

$$
\begin{aligned}
-24+x & =6 x \\
-x & -x
\end{aligned} \frac{5 x}{5} \Rightarrow x=\frac{-24}{5} \text { or }-4.8
$$

10. Write the slope-intercept form of the line passing through the points $\begin{gathered}\boldsymbol{x}_{\mathbf{1}} \\ (2,3) \\ y_{\mathbf{1}}\end{gathered}$ and (6,4).

$$
m=\frac{4-3}{6-2}=\frac{1}{4}
$$

Use point-slope form:
I used $(2,3)$. $(6,4)$ wand give the same answer.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=\frac{1}{4}(x-2) \\
& y-3=\frac{1}{4} x-\frac{2}{4} \\
& y=\frac{1}{4} x-\frac{1}{2}+\frac{3}{1} \cdot \frac{2}{2} \\
& y=\frac{1}{4} x+\frac{5}{2}
\end{aligned}
$$

When solving e quanons,
Ask yourself if each equation is LINEAR, QUADRATIC, OR RATIANL,
Solve the following equations:

$$
\begin{array}{ll}
\text { 11. } 5 x+4 & =2(x+8) \quad \text { Linear } \\
5 x+4 & =\underset{-2 x}{2 x}+16
\end{array} \quad \square \quad \frac{3 x}{5}=\frac{12}{3}
$$

$$
\begin{aligned}
& 5 x+4=\underset{-2 x}{2 x}+16 \\
& -2 x \\
& \hline 3 x+4=16 \\
& -4
\end{aligned}
$$

$$
x=4
$$

12. $5 \times 4 x+1.32=4.7 x$

Linear
$-5.14 x \quad-5.14 x$

$$
\frac{1.32}{-0.44}=\frac{-0.44 x}{-0.44} \Rightarrow-3=x \quad \text { or } \quad x=-3
$$

13. $x^{2}-13 x+40=0$

Quadratic

$$
\begin{aligned}
& (x-5)(x-8)=0 \\
& x-5=0 \quad \text { or } \quad x-8=0 \\
& x=5 \text { or } \quad x=8
\end{aligned}
$$

14. $(x-2)(x+1)=28 \quad$ Quadratic
$\checkmark$ Need to get 0 on this side to use ZPP

$$
\begin{aligned}
& x^{2}-2 x+1 x-2=28 \\
& x^{2}-2 x+1 x-2-28=0
\end{aligned} \quad \begin{aligned}
& x^{2}-x-30=0 \\
& (x-6)(x+5)=0
\end{aligned} \int \frac{x-6=0 \text { or } x+5=0}{x=6 \text { or } x=-5}
$$

15. $\frac{3}{t+2}=\frac{6}{t+16}$ Ranonal Proportion, so can cross -multiply

$$
\begin{array}{rl}
3(t+16)= & 6(t+2) \\
3 t+48= & 6 t+12 \\
& -3 t \\
-3 t & 38+12
\end{array}
$$

16. $\frac{7}{3 x}-\frac{x+2}{x}=\frac{3}{7} \quad$ Rational Multiply each termby $\angle C D$

$$
\begin{aligned}
& \frac{7}{8 x} \cdot \frac{7 x}{1}-\frac{(x+2)}{x} \cdot \frac{2 x}{1}=\frac{3}{7} \cdot \frac{21 x}{1} \Rightarrow 49-21(x+2)=9 x \\
& \Rightarrow 49-21 x-42=9 x \Rightarrow \frac{7}{30}=\frac{30 x}{30} \Rightarrow x=\frac{7}{30}
\end{aligned}
$$

Solve each system of linear equations. If a system has no solution or infinitely many solutions, state so.
18. $y=3-2 x$

$$
\begin{aligned}
& 10 x+5 y=11 \\
& 10 x+5(3-2 x)=11 \\
& 10 x+15-10 x=11 \\
& 15=11 \text { false }
\end{aligned}
$$

No solution

Factor each of the following polynomials completely:
19. $3 x^{2}+13 x+14$

Trial \& error
( $3 x$ )(x)

Factors of 14 are 1.14
20. $\left(8 x^{2}-3 y\right)+(8 x y-3 x)$

NO GCF to pull ort
$\rightarrow$ we want the outer a inner

4 terms to add up to $13 x$

Rearrange:

$$
\left(8 x^{2}+8 x y\right)-3 y-3 x
$$

$A C$ Method $A=3, C=14$ $A C=42$. A pair of factors of 42 that add pto 13 are 6 and 7 .

$$
\begin{aligned}
& \begin{array}{l|l}
p \text { to } 13 x \\
x+2)
\end{array} \left\lvert\, \begin{array}{l}
3 x^{2}+13 x+14= \\
\left(3 x^{2}+6 x\right)+(7 x+14)= \\
=3 x(x+2)+7(x+2) \\
=
\end{array}\right. \\
& \begin{array}{l}
\text { Factor } \\
\text { Gaping }
\end{array} \\
& \left(8 x^{2}+8 x y\right)+(-3 y-3 x) \\
& =8 x(x+y)-3(y+x) \\
& =8 x(x+y)-3(x+y)=(x+y)(8 x-3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Factor by } \\
& \text { Grouping }
\end{aligned} \quad \longrightarrow\left(8 x^{2}+8 x y\right)+(-3 y-3 x)
$$

$$
=8 x(x+y)-3(y+x)
$$

21. $4 m^{3}-12 m^{2}-40 m$

$$
\begin{aligned}
& =4 m\left(m^{2}-3 m-10\right) \\
& =4 m(m-5)(m+2)
\end{aligned}
$$

22. $x^{2}-\frac{4}{9}=\left(x+\frac{2}{3}\right)\left(x-\frac{2}{3}\right)$

$$
\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \text { use } A^{2}-B^{2}=(A+B)(A-B)
$$

$$
\begin{aligned}
& \text { 17. } x+4 y=18 \quad \Rightarrow \quad \mathrm{x}=18-4 \mathrm{y} \quad \text { so } 3(18-4 y)-\boldsymbol{y}=-24 \\
& 3 x-y=-24 \quad \longleftarrow 54-12 y-y=-24 \\
& 54-13 y=-24 \\
& \text {-54 -54 } \rightarrow y=6 \text { so } x=18-4.6 \\
& \frac{-13 y}{-15}=\frac{-78}{-13} \quad \frac{y-6}{(-6,6)} \quad x=18-24=-6
\end{aligned}
$$

Perform the indicated operations and simplify. Express your answers using positive exponents only.
23. $(4 \cdot 5)^{2}+4 \cdot 5^{2}$ Use order of operations.

Parentheses
Exponents
Mult/Div

$$
=(20)^{2}+4.25=400+100=500
$$

24. $\frac{18 x^{24}\left(y^{3}\right)^{2}}{6 x^{3} y^{0} z^{2}} \begin{gathered}y^{0}=1 \\ y^{0}=\frac{x^{24}}{6} y^{6} \\ x^{3} \cdot 1 z^{2} \\ \frac{3 x^{21} y^{6}}{z^{2}} \\ \end{gathered}$
25. $\frac{x^{2}-7 x}{x^{2}+2 x} \cdot \frac{x^{2}+7 x+12}{x^{2}-4 x-21}=\frac{\not x(x-7)}{\not x(x+2)} \cdot \frac{(x+3)(x+4)}{(x-7)(x+3)}=\frac{x+4}{x+2}$
26. $(2 x-3)^{2}$

$$
\begin{aligned}
& =(2 x-3)(2 x-3) \quad \text { and FOLL it out } \\
& =4 x^{2}-6 x-6 x+9=4 x^{2}-12 x+9
\end{aligned}
$$

$$
=(2 x-3)(2 x-3) \text { and FOIL it out. }
$$

BEWARE: $\quad(A-B)^{2} \neq A^{2}-B^{2}$ so $(2 x-3)^{2} \neq 4 x^{2}-9-$ wrong
27.

$$
\begin{aligned}
& \frac{a^{2}+5 a-14}{a+3} \div \frac{a-2}{a^{2}+2 a-3}=\frac{a^{2}+5 a-14}{(a+3)} \cdot \frac{a^{2}+2 a-3}{(a-2)} \\
& =\frac{(a+7)(a-2)}{(a+3)} \cdot \frac{(a+3)(a-1)}{(a-2)}=\left(\begin{array}{c}
(a+7)(a-1) \\
\text { or } \\
a^{2}+6 a-7
\end{array}\right.
\end{aligned}
$$

28. $4 \sqrt{18}-\sqrt{72}+3 \sqrt{63}=4 \cdot 3 \sqrt{2}-6 \sqrt{2}+3 \cdot 3 \sqrt{7}=12 \sqrt{2}-6 \sqrt{2}+9 \sqrt{7}$

$$
\begin{aligned}
& \sqrt{18}=\sqrt{9 \cdot 2}=\sqrt{9} \cdot \sqrt{2}=3 \sqrt{2} \\
& \sqrt{72}=\sqrt{36 \cdot 2}=\sqrt{36} \sqrt{2}=6 \sqrt{2} \\
& \sqrt{63}=\sqrt{9 \cdot 7}=\sqrt{9} \cdot \sqrt{7}=3 \sqrt{7}
\end{aligned}
$$

29. $-2 y^{2}\left(4 x y+15 y^{3}\right)$

$$
=-8 x y^{3}-30 y^{5}
$$

$$
\text { 30. } \begin{aligned}
& \frac{3(2 x+7)}{2 x^{2}+9 x-18}+\frac{x+5}{x+6}=\frac{6 x+21}{(2 x-3)(x+6)}+\frac{(x+5)}{(x+6)} \cdot \frac{(2 x-3)}{(2 x-3)} \\
&= \frac{6 x+21}{(2 x-3)(x+6)}+\frac{2 x^{2}+7 x-15}{(2 x-3)(x+6)}=\frac{2 x^{2}+13 x+6}{(2 x-3)(x+6)} \\
&=\frac{(2 x+1)(x+6)}{(2 x-3)(x+6)}=\frac{2 x+1}{2 x-3}
\end{aligned}
$$

$$
\text { 31. } \begin{aligned}
\frac{6 a^{3}-10 a^{2}-16 a}{2 a^{2}} & =\frac{6 a^{3}}{2 a^{2}}-\frac{10 a^{2}}{2 a^{2}}-\frac{16 a}{2 a^{2}} \\
& =3 a-5-\frac{8}{a}
\end{aligned}
$$

$$
\text { 32. } \begin{aligned}
\frac{\left(\frac{k+1}{28 k}\right)}{\left(\frac{5 k-2}{21 k}\right)} & =\frac{k+1}{28 k} \cdot \frac{21 k}{5 k-2}=\frac{(k+1)}{\pi \cdot 4 \cdot k} \cdot \frac{\pi \cdot 3 \cdot k}{(5 k-2)} \\
& =\frac{3(k+1)}{4(5 k-2)} \text { or } \frac{3 k+3}{20 k-8}
\end{aligned}
$$

33. Graph $4 x+3 y=12$ by first finding the $x$ - and $y$-intercepts of the equation Label points.

To find the $x$-intercept,
set $y=0$

$$
4 x+0=12 \Rightarrow 4 x=12 \Rightarrow x=3
$$

To find the $y$-intercept,
set $x=0$

$$
\begin{aligned}
& \text { set } x=0 \\
& 0+3 y=12 \Rightarrow 3 y=12 \Rightarrow y=4
\end{aligned}
$$

$x$-intercept: ( $\mathbf{3}, \mathbf{0}$ )
$y$-intercept: ( 0,4 )

34. Graph $x-2 y=4$ by first writing the equation in slope-intercept form. Label points.

Slope-intercept form: $y=m x+b$
So we need to solve for $y$.

$$
\begin{aligned}
x-2 y & =4 \\
\frac{-x}{-x} \frac{-2 y}{-2} & =\frac{-x}{-2}+\frac{4}{-2} \\
y & =\frac{1}{2} x-2 \\
m & =\frac{1}{2}=\frac{-1}{-2} \text { and } y-\sin (0,-2)
\end{aligned}
$$


35. Find the solution to the system of linear equations by graphing. If there is no solution or infinitely many solutions state so.

$$
2 x+7 y=28
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
2 x-14 y=-14 \\
2 x+7 y=28
\end{array}\right. \\
2 x-14 y=-14 \\
\frac{-14 y}{-14}=\frac{-2 x}{-14} \frac{-14}{-14} \\
y=\frac{1}{7} x+1 \\
y-\operatorname{lnt}(0,1) \\
m=\frac{1}{7}
\end{gathered}
$$

$$
\begin{aligned}
& 2 x+7 y=28 \\
& \frac{7 y}{7}=-\frac{2 x}{7}+\frac{28}{7} \\
& y=-\frac{2}{7} x+4 \\
& y-1 n+(0,4) \\
& m=-\frac{2}{7}
\end{aligned}
$$


36. Nancy bought 7 pounds of oranges and 3 pounds of bananas for $\$ 17$. Her husband later bought 3 pounds of oranges and 6 pounds of bananas for $\$ 12$. What was the cost per pound of the oranges and the bananas?
Let $x=\operatorname{cost} / 16$ of oranges
$y=\operatorname{cost} / 16$ of bananas
Nancy: $\quad 7 x+3 y=17$
Husband: $\quad \frac{3 x}{3}+\frac{6 y}{3}=\frac{12}{3} \Rightarrow x+2 y=4 \Rightarrow x=4-2 y$

$$
\begin{aligned}
& 7(4-2 y)+3 y=17 \Rightarrow 28-14 y+3 y=17 \\
& \Rightarrow 28-11 y=17 \Rightarrow-11 y=-11 \Rightarrow y=1 \\
& x=4-2(1)=2
\end{aligned}
$$

oranges cost $\$ 2 / 16$, bananas $\cos t \$ 1 / 16$
37. One serving of trail mix has 67 grams of carbohydrates, which is $22 \%$ of the recommended daily amount. What is the total recommended daily amount of carbohydrates? Round to the nearest gram.

$$
\begin{aligned}
& \frac{67}{.22}=\frac{.22 x}{.2 x} \quad \text { where } x=\begin{array}{c}
\text { daily recommended } \\
\text { amant of carbs }
\end{array} \\
& x=304 . \overline{54} \text { grams, } 50 \quad x \approx 305 \text { grams }
\end{aligned}
$$

38. A 61 -foot string of lights will be attached to the top of a 11 -foot pole for a holiday display. How far from the base of the pole should the end of the string of lights be anchored?


$$
\begin{aligned}
& d^{2}+11^{2}=61^{2} \\
& d^{2}+121=3721 \\
& d^{2}=3600 \\
& d=60 \mathrm{ft}
\end{aligned}
$$

39. An acorn falls straight down from the top of a tall oak tree and hits the ground without hitting any branches on the way down. Solve the equation $16 t^{2}+64=0$ for $t$ to find how long it takes to reach the ground.

$$
\begin{aligned}
-16 t^{2}+64=0 \Rightarrow & -16\left(t^{2}-4\right)=0 \\
& -16(t+2)(t-2)=0
\end{aligned}
$$

Use ZPP: $-16 \times 0$ or $t+2=0$ or $t-2=0$ or $t=2$

It takes 2 seconds to reach the grand.
40. At the end of spring break, Lucy left the beach and drove back towards home, driving at a rate of 40 mph . Lucy's friend left the beach for home 30 minutes (half an hour) later, and drove 50 mph . How long did it take Lucy's friend to catch up to Lucy?

|  | Distance $=$ Rate $\times$ Time |  |  |
| :--- | :---: | :---: | :---: |
| Lucy | $40\left(t+\frac{1}{2}\right)$ | 40 | $t+\frac{1}{2}$ |
| Luau's <br> friend | $50 t$ | 50 | $t$ |

For Lucy's trend to catch up to Lucy, their distances troubled most be the same: $\quad 40\left(t+\frac{1}{2}\right)=50 t \Rightarrow$

$$
\begin{aligned}
40 t+20 & =s 0 t \Rightarrow \\
\frac{20}{10} & =\frac{10 t}{10} \\
t & =2 \mathrm{hrs}
\end{aligned}
$$

It takes Lucy's freed 2 hrs to catch up to her.

